Complex WKB analysis of a -symmetric eigenvalue problem
نویسندگان
چکیده
منابع مشابه
Complex WKB Analysis of a PT Symmetric Eigenvalue Problem
The spectra of a particular class of PT symmetric eigenvalue problems has previously been studied, and found to have an extremely rich structure. In this paper we present an explanation for these spectral properties in terms of quantisation conditions obtained from the complex WKB method. In particular, we consider the relation of the quantisation conditions to the reality and positivity proper...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملSymmetric Eigenvalue Problem: Tridiagonal Reduction
Our ultimate goal in this project is to solve the symmetric eigenvalue problem on symmetric multiprocessor machines more quickly than existing implementations. In order to achieve this goal, we have chosen to implement an improved multithreaded version of a specific phase of the current best algorithmic approach, namely the reduction of a full symmetric matrix to banded form using two-sided ort...
متن کاملThe symmetric eigenvalue complementarity problem
In this paper the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed. It is shown that the symmetric (EiCP) is equivalent to finding an equilibrium solution of a differentiable optimization problem in a compact set. A necessary and sufficient condition for solvability is obtained which, when verified, gives a convenient starting point for any gradient-ascent loc...
متن کاملConvergence Analysis of Gradient Iterations for the Symmetric Eigenvalue Problem
Gradient iterations for the Rayleigh quotient are simple and robust solvers to determine a few of the smallest eigenvalues together with the associated eigenvectors of (generalized) matrix eigenvalue problems for symmetric matrices. Sharp convergence estimates for the Ritz values and Ritz vectors are derived for various steepest descent/ascent gradient iterations. The analysis shows that poores...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2007
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/40/33/023